Monatshefte für Chemie 117, 955--967 (1986) **Monatshefte für Chemie**

Coordination Compounds of N-(2-aminophenyl)- and N-(3-aminophenyl)pyridine-2'-carboxamide with Cobalt(II) and Cobalt(III). The Nature of Amide Deprotonation Induced by Cobalt(III) in Acidic *pit*

Themistoclis Kabanos, Spyros P. Perlepes, Vaggelis Hondrellis, and **John M. Tsangaris***

Chemistry Department, Laboratory of Inorganic and General Chemistry, University of Ioannina, Ioannina, Greece

(Received 19 June 1985. Accepted 2 July 1985)

New complexes of the general formulae $CoL_2X \cdot nH_2O$ (*X* = Cl, Br, I, NCS, NO₃ and $n = 0, 1, 2$ or 3), Co₂L₂X₃ EtOH (X = Cl, Br, I, NCS), Co(DH)X₂ $(X = NCS, NO_3)$ and $Co(DH)_2X_2(X = NCS, I)$ have been prepared, where $LH =$ N-(2-aminophenyl)pyridine-2'-carboxamide and $DH = N-(3$ -aminophenyl)pyridine-2'-carboxamide. The compounds were characterized by X-ray powder patterns, conductivity measurements, thermogravimetric analysis, magnetic properties as well as by IR, ligand field and 1 H-NMR spectroscopy. In the presence of oxygen, LH undergoes a cobalt(III) ion promoted amide hydrogen ionization in the pH region 4-6.

[Keywords: Amide deprotonation; Cobalt(II) complexes; Cobalt(III) complexes; Electronic spectra; IR ; Magnetic moments]

Koordinationsverbindungen yon N- (2~aminophenyl) ~ und iV- (3-amino~ phenyl)pyridin-2'-carboxamid mit Cobalt(II) und Cobalt(Ill). Die Natur der Deprotonierung yon Amiden induziert yon Cobalt(III) in saurem Medium

Neue Komplexe der allgemeinen Formeln $CoL_2X \cdot n \cdot H_2O(X = \text{Cl}, \text{Br}, \text{I}, \text{NCS},$ NO₃ und $n = 0, 1, 2, 3$, $Co_2L_2X_3 \cdot E$ tOH (X = Cl, Br, I, NCS), Co(DH)X₂ $(X = NCS, NO_3)$ und $Co(DH)_2X_2$ (X = NCS, I) wurden dargestellt mit LH = $N-(2-aminophenyl)pyridin-2'-carboxamid und $DH = N-(3-aminophenyl)pyridin-2-₀qqqqlqoln-₀qrqlqlqlq-₁qrqlqlq-₀qrqlqlq-₁qrqlq-₁qrqlq-₁qrqlq-₁qrqlq-₁qrqlq-₁qrqlq-₁qrqlq-₁qrqlq-₁qrqlq-$$ 2'-carboxamid. Die Verbindungen wurden mittels Röntgenstrukturanalyse, Leitfähigkeitsmessungen, thermogravimetrischen Analysen, magnetischen Eigenschaften sowie mit IR-, Ligandenfeld- und 1H-NMR-Spektroskopie charakterisiert. In Gegenwart yon Sauerstoff unterliegt LH einer Cobalt(III)ioninduzierten Amidwasserstoffionisierung im pH -Bereich 4-6.

Introduction

The inorganic chemistry of organic amides is an important part of a number of current chemical problems 1^{-3} . The main results on the coordinating properties of the amide bond were reviewed by *Sigel* and *Martin*¹. Their survey clearly shows that research interest is centred on the stability and structure of metal ion complexes of amides, oligopeptides and related ligands; of special interest are the deprotonation processes and the species thereby formed. As part of our systematic investigation of the metal-amide interactions⁴⁻¹¹, we report here the preparation and study of complexes of Co(II) and Co(III) salts with N-(2-aminophenyl)pyridine-2' carboxamide (A) and N-(3-aminophenyl)pyridine-2'-carboxamide (B), abbreviated as LH and DH, respectively. These ligands have interesting ligating possibilities because they have three donor groups, two of which (the aromatic amino group and the pyridine N-atom) may serve as anchoring groups¹ to the secondary amide bond favoring deprotonated products. LH and DH have been shown to coordinate to Ni(II), Cu(II), $Zn(II)$, Cd(II), Hg(II), Pd(II) and Pt(II) in several modes $9-11$, largely determined by the nature of the metal ion, the o - or *m*-position of the $-NH₂$ group and the *pH* of the reaction system. Particular attention is devoted to the cobalt ion-amide systems because a) deprotonation of the amide hydrogen and coordination of Co(II) at the amide nitrogen appear essential for oxygenation of dipeptide complexes¹, b) the N-coordination of the deprotonated amide bond leads to the lowering of reduction potentials of metal couples, i.e., stabilization of high oxidation states², c) some preliminary results reported in Ref.⁹ supported evidences for unusual stoichiometries, and d) Co(II) was reported to be the first and only metal ion which promotes amino proton ionization near the physiological pH range 12,13 .

Experimental

The ligands were obtained as described previously⁹. Analyses and physicochemical techniques were carried out by published methods^{9, 14}. The pH of the reaction mixtures was followed by an Orion Research (model 801 A) pH -meter with glass and calomel electrodes. The complexes $CoL_2X \cdot nH_2O$ ($X = Cl$, Br, I, NCS, NO₃ and $n = 0, 1, 2$ or 3) were prepared by adding a solution of LH (14 mmol) in absolute ethanol (180 ml) to a solution of 14mmol of the required Co(II) salt $[CoCl_2, CoBr_2, CoI_2, Co(NCS)_2, Co(NO_3)_2 \cdot 6H_2O]$ in water (40 ml). The reaction mixtures were heated under vigorous stirring at 50° C in the atmosphere for 5 h and then allowed to stand at room temperature overnight. During the period of heating the initial pink colors of the solutions became at first brown and then wine to dark red; finally solid products separated out. The precipitates were collected by filtration, washed with ethanol $(3 \times 10 \text{ m})$ and dried in vacuum over silica gel and sodium hydroxide. Using only absolute ethanol as solvent and strictly anhydrous Co(II) salts, the above synthetic procedure gave the complexes $Co_2L_2X_3 \cdot EtOH(X=Cl, Br, I, NCS)$. Immediately after the addition of the solution of LH to the solution of the metal salt, a dark green reaction mixture was obtained; no other color changes were observed. Efforts to prepare the analogous nitrato complex using $Co(NO₃)₂·6H₂O$ as starting material and triethyl orthoformate for dehydration failed. A solid product with poor analytical results was obtained. When the *pH* of the above mentioned reaction mixtures was adjusted in the 7-10 region, hydroxo-derivatives of uncertain nature were isolated. The non-deprotonated complexes of DH were easily prepared by mixing and stirring a warm solution of Co(NCS)₂, CoI₂ or Co(NO₃)₂ 6H₂O in absolute ethanol and few ml of triethyl orthoformate with the appropriate amount of the ligand dissolved in the minimum required hot volume of the same solvent. Solid product formation was instantaneous. The precipitates were collected, washed and dried as above. In the case of $Co(NCS)$ ₂ two different complexes were obtained. Using 9.38mmol of ligand and 9.45mmol of the metal salt the compound $Co(DH)(NCS)$, was prepared, while using a 2 : 1 or larger ligand: metal ion molar ratio $Co(DH)_{2}(NCS)$, was isolated. It is worth noting that attempts to prepare the 1 : 1 iodide complex or the 2 : 1 nitrato compound, using various molar ratios and different reaction times, were also made, but in all experiments the complexes $Co(DH)_2I_2$ and $Co(DH)(NO_3)_2$ were again precipitated. No evidence was obtained in any of the experiments for hydrolysis occurring at the amide group.

Results and Discussion

Preparative and analytical data, colors and molar conductivity values are given in Table 1. The complexes are microcrystalline or powder-like, stable in atmospheric conditions, insoluble in nonpolar solvents and soluble only in *DMF* and *DMSO*. The Λ_M values of the complexes 1-9 in *DMF* and *DMSO* are in accord with 1 : 1 electrolytes¹⁵. The fact that the conductivities of the solutions of 10-13 increase with time can be attributed to the strong donor capacity of the solvents used, which leads to displacement of anionic ligands and change of electrolyte type¹⁵; thus the data are somewhat difficult to interpret. X-ray powder diffraction patterns indicate that each compound represents a definite complex and not merely mixtures of simpler stoichiometric types. The data also indicate the formation of two series of isomorphous compounds corresponding to the formulae $CoL_2X \cdot H_2O(X = C1, Br)$ and $Co_2L_2X_3 \cdot EtOH(X = C1, Br)$, I). Thermogravimetric (TG) and differential thermogravimetric (DTG)

No.	Complex	Color	pH of Precipitation	Yield $(\%)$
	$C_0L_2Cl·H_2O$	dark red	$4.0 - 4.5$	$68^{\rm b}$
2	CoL ₂ Br·H ₂ O	dark red	$4.5 - 5.0$	74^b
3	CoL ₂ I·3H ₂ O	red-brown	$5.5 - 6.0$	75 ^b
4	$CoL2(NCS) \cdot 2 H2O$	red-brown	$4.5 - 5.0$	30 ^b
5	$CoL_2(NO_2)$	red	$5.0 - 5.5$	73 ^b
6	Co ₂ ,Cl ₃ ·EtOH	dark green	$3.5 - 4.0$	76 ^c
7	$Co2L2Br3·EtOH$	olive green	$4.0 - 4.5$	78c
8	$Co2L3I3 \cdot EtOH$	brown-green	$5.5 - 6.0$	61 ^c
9	$Co2L2(NCS)3·EtOH$	dark green	$4.0 - 4.5$	62°
10	$Co(\overline{D}H)(NCS)$	bluish-green	$6.5 - 7.0$	94c
11	$Co(DH)_{2}(NCS)_{2}$	pink	$6.5 - 7.0$	68 ^c
12	$Co(DH)_2I_2$	pale brown	$6.5 - 7.0$	95c
13	Co(DH)(NO ₃) ₂	deep red	$6.5 - 7.0$	84 ^c

Table 1. *Colors, pH of precipitation, yields, analytical results ~*

a Required values in parentheses.

b Based on the ligand.

° Based on the metal.

studies show that the water in the Co(III) complexes is lattice held 11 , while the ethanol molecule present in $6-9$ is coordinated.

The principal IR bands of interest are listed in Tables 2 and 3. In the v (O—H) region the spectra of the hydrated complexes exhibit, on top of the strong $v(NH₂)$ bands, a weak, very broad absorption covering the whole 3 500-3 150 cm⁻¹ region, attributed to the presence of exclusively lattice water¹⁶. The presence of coordinated ethanol ligand in $6-9$ is manifested by a sharp v (O—H) band at 3 510–3 455 cm^{—117}. In the spectra of 1–9 large frequency decreases (95–190 cm⁻⁻⁻) for the $v(NH_2)$ bands and about 35 cm⁻¹ for the δ (NH₂) band indicate --NH₂ coordination ¹⁸. As would be expected from the stoichiometries the $v(N-H)_{\text{amide}}$ band is absent in 1-9. The absence of large systematic shifts of the $v_{as}(\text{NH}_2)$, $v_s(NH_2)$, $\delta(NH_2)$ and $v(N-H)$ _{amide} bands in the spectra of the nondeprotonated Co(II) complexes of DH implies that there are no interactions between the amino group, amide-N atom and Co(II). The data for the deprotonated L^- complexes reveal that the amide I, II and III bands shift towards the region expected for amide-N coordination 19 . The amide II and III bands are replaced by a strong absorption at about 1 390 cm^{-1}, which is assigned to a pure C—N stretch; this frequency value is typical for deprotonated secondary amide complexes¹⁹. The shifts of these modes in the spectra of $10-13$ indicate amide-O coordination^{9, 19}. In the spectra of

$X\%$			$N\%$	$\Lambda_{\rm M}^{\rm d}$ (Scm ² mol ⁻¹)	
	$C\%$	H%		DMF	DMSO
5.97(6.60)	53.12(53.69)	4.15(4.14)	15.07 (15.66)	60	42
13.61 (13.74)	50.15 (49.58)	3.84(3.82)	14.69 (14.46)	70	34
18.93 (19.10)	43.27 (43.39)	3.79(3.95)	12.22 (12.65)	64	39
9.83(10.06)	52.61 (51.99)	3.92(4.16)	16.49 (16.98)	70	32
	52.49 (52.85)	3.61(3.70)	18.13 (17.98)	69	40
15.11 (15.31)	45.08 (44.94)	3.81(3.78)	11.84(12.10)	50	30
28.62 (28.94)	37.40 (37.71)	2.97(3.17)	10.11(10.15)	72	37
38.97 (39.28)	32.45 (32.22)	2.91(2.71)	9.00(8.67)	65	39
22.50 (22.85)	46.14 (45.67)	3.23(3.44)	16.79 (16.53)	67	36
29.30 (29.91)	42.82 (43.30)	3.13(2.86)	17.90 (18.04)	58 ^e	48 ^e
19.99 (19.31)	51.43 (51.90)	3.44(3.69)	18.04 (18.63)	64°	66 ^e
33.93 (34.33)	38.86 (38.99)	3.09(3.01)	11.36 (11.37)	120 ^e	62 ^e
	36.21 (36.37)	2.92(2.80)	17.41 (17.68)	12 ^e	ge

and conductivity data for the prepared complexes

^d Values of molar conductivity for ca. $10^{-3} M$ solutions at 25 °C.

^e The conductivities of the solutions increase with time. $X = \text{Cl}$, Br, I, NCS; *EtOH* $=$ ethanol.

> all the complexes prepared the pyridine deformation bands shift to higher frequencies indicating coordination of the ring N-atom $2⁰$. The spectra of 9, 10, and 11 exhibit the $v(CN)$ and $\delta (NCS)$ bands in the regions characteristic of terminal N-bonded isothiocyanate groups²¹. The frequencies of these modes in 4 support the presence of ionic thiocyanate²¹. The appearance of a strong band at 1375 cm^{-1} in the spectrum of 5 confirms that an ionic D_{3h} nitrate group is present 22 . The values of the frequencies assigned as vibrational modes of the nitrate groups in 13 (Table 3) are strongly indicative of the presence of chelated bidentate nitrates^{22, 23}, because the separation of the two highest frequency bands is $190 \,\mathrm{cm}^{-1}$. In addition, the spectrum exhibits two strong $v(\mathrm{Co}^{11}$ --O) bands in the far-IR region²⁵. The possibility of bridging nitrato groups can be ruled out, because the highest frequency IR mode appears below 1500 cm^{-122} . The far-IR spectra of the complexes $Co₂L₂X₃$ EtOH *(X)* $=$ Cl, Br, I, NCS) and Co(DH)(NCS)₂ show terminal stretching Co(II)-X frequencies in the region expected for pseudotetrahedral coordination around $Co(II)^{24,25}$.

> The ${}^{1}H\text{-NMR}$ signal due to the amide proton is absent in the spectra of the diamagnetic Co(III) complexes (Table 4), providing conclusive evidence that this proton is lost during complexation. NMR evidences for iminol structures 26 were not found. The spectra show characteristic

960 **T.** Kabanos *et al. :*

Comp.	$v_{\rm as}$ (NH ₂) ^b	$v_s(\text{NH}_2)$ ^c	$v(N-H)_{amide}$	$\delta(\text{NH}_2)^d$
LH	3410s	3 340 m	3310m	1 650 m
1	3310s	$3165 \,\mathrm{m}$		1620 m
2	3315s	3160m		1622s
3	3315 mb	$3190 \,\mathrm{m}$		1626 s
$\overline{\mathbf{4}}$		3185m		1623 s
5	3300mb	3 205 s		1622s
6	3295s	3 210 m		1620 m
7	3 2 2 0 s	3150 mb		1625 m
8	3 2 3 0 s	3190 mb		1619 _s
9	3 245 m	3190 m		1620 m
DH	3420s	3345 s	3320 s	1640 s
10	3410 m	3 3 2 5 m	3 245 m	1641 sh
11	3415s	3 360 m	3285sb	1642 s
12	3 390 mb	$3290 \,\mathrm{mb}^{\mathrm{j}}$	$3290 \,\text{mb}^{\text{J}}$	1637 sh
13	3405 s	3335 mb	3305 m	1636 m

Table 2. *Diagnostic IR ligand bands* $(cm⁻¹)^a$ of $N-(2-aminophenyl)pyridine-2'-1$ *cobalt(III) and cobalt*

^a Assignments of $-MH_2$ and amide bands for LH and DH were assisted by deuterium isotopic substitution.

b Antisymmetric stretching.

° Symmetric stretching.

d Scissoring.

 $v(C=O)$.

downfield shifts of the $6'$ -pyridyl and $-NH₂$ resonances relative to the free ligand, confirming the involvement of both the ring-N atom and the aromatic amino group in coordination $10,27$. The integration ratio of the signals is consistent with the assignments.

Table 5 gives the room temperature magnetic moments and details of the solid state electronic spectra of the prepared complexes. Both the magnetic 28 and electronic spectral data 29 indicate that 10 has a pseudotetrahedral structure, while 11, 12, and 13 have high-spin six-coordinate configurations. Compounds 1-5 were shown *(Gouy* and *Faraday* methods) to be diamagnetic, confirming that they are Co(III) complexes. The frequencies of the observed absorption maxima and the values of the calculated ligand field parameters are in accord with the presence of a $[C_0^{\text{III}}]$ ₆] chromophore in the solid state^{28, 29}. The solids formulated as $Co₂L₂X₃$ *EtOH* (X = Cl, Br, I, NCS) have unusual magnetic and spectral properties. The effective magnetic moments found correspond very well to the average value for one low-spin cobalt(III) and one high-spin cobalt(II)

Charac- teristic I ^e	Amide Π^{f}		Bands III _t	$\delta (P_y)^g$	$\delta (P y)$ ^h
1680 vs	1 535 s		1 238 w	$620 \,\mathrm{m}$	$405 \,\mathrm{m}$
1600 vs		1 389 vs		642 m	441 m
1607 vs		1388 vs		652 m	439 m
1604 vs		1401 vs		651 m	452 m, 444 sh
1602 vs		1 386 vs		657m	448 m
1607 vs		1 395 vs		649 m	421 m
1604 vs		1 388 vs		654 m	449 m
1609 vs		1 393 vs		646 m	440 m
1604 vs		1401 vs		653 m	443 m
1.603 vs		1 394 vs		$652 \,\mathrm{m}$	448 m
1.689 vs	1 549 s		1 241 m	$620 \,\mathrm{m}$	402 m
1623 vs	1 569 vs		1265 s	645 m	418 w
1621 vs	1 570 vs		1 269 m	$652 \,\mathrm{m}$, 641 w	416 m
1622 vs	1568 _s		1 270 m	652 m	411 w
1625 vs	1 572 m		1 274 m	654 m	417 w

carboxamide, N-(3-aminophenyl)pyridine-2'-carboxamide and their cobalt(II), (H, III) complexes

f These bands in secondary amides arise from v (C—N) as well as from δ (NH) modes.

^g In-plane pyridine ring deformation.

h Out-of-plane pyridine ring deformation.

ⁱ Not assigned.

^j Overlapping.

atom per molecular unit. It seems likely that the diamagnetic subunit is the octahedral $\text{[Co}^{\text{III}}L_2$ ⁺ ion and that the paramagnetic one is the pseudotetrahedral $\overline{[Co^{II}X_3(EtOH)]^-}$ ion; this is further supported by the solid state electronic spectra. These spectra contain bands at the same energies with those of the $[Co^{III}L_2]^+X^{-} \cdot nH_2O$ series (X = Cl, Br, I, SCN, NO₃) and maxima characteristic of pseudotetrahedral $\lceil \text{Co}^{11}X_3L \rceil$ anions (L = monodentate ligand) with C_{3v} symmetry $24, 25$. Square planar Co(II) structures, six-coordinate low-spin $Co(II)$ configurations or d'spincrossover situations can be ruled out with certainty^{3,9,26,29}; these stereochemistries exhibit maxima at different energies. Complexes with both Co(II) and Co(III) structural subunits have been characterized³⁰.

From the overall data presented it is concluded that DH acts as a bidentate chelate ligand through the amide-O and pyridine-N atoms. In 10 the tetrahedral coordination is completed by two monodenate isothiocyanate groups (C). The complexes 11, 12, and 13 have octahedral stereochemistries with $[Co^{II}O_2N_4]$, $[Co^{II}O_2N_2]$ and $[Co^{II}O_3N]$ chro-

Table 3. Characteristic IR inorganic anion and far-IR bands (cm^{-1})

ł. ² I he $v_2(A_1)$ and $v_3(B_2)$ modes of the C_2 , intract governed by strong bands of the coordinated ligand.

⁶ Not assigned.

962 T. Kabanos *et al. :*

mophores, respectively. The cobalt(III) complexes 1-5 have octahedral stereochemistry with terdentate pyridyl-N, deprotonated amide-N and aromatic-NH₂ coordination of $\overline{L}^{\perp}(\mathbf{E})$. Deprotonation leads to systems having a considerable degree of delocalization. Synthetic, analytical, magnetic and spectroscopic data suggest that the complexes $6-9$ are mixed-valence species and can be formulated as $[Co^{III}L_2]$ ⁺ $[CO^H X₃(EtOH)]$ ⁻. They contain the above mentioned bis-terdentate cobalt(III) cationic structural subunit and the $[Co^{II}X_3(EtOH)]$ ⁻ pseudo-

Complex	Water	NH (amide)	H_6 -(pyridyl)	NH ₂
LН		10.10 s	8.76 d	4.94 s
	3.44 s		9.22d	6.53 sb
2	3.41 s		9.09d	6.37 sb
3	3.42s		9.05d	6.24 sb
4	3.47 s		9.03d	6.26 sb
5			9.05d	6.20 sb

Table 4. *Characteristic* ¹H-NMR (δ , ppm)^{a,b} spectral data of the diamagnetic *cobalt(Ill) complexes in DMSO-d 6*

^a TMS was used as an internal standard.

^b The spectra were ran immediately after dissolution, s = singlet; $d =$ doublet; $b = broad$.

tetrahedral anionic one. The *iminol* structural type $26, 30$, which seems to be an intermediate for deprotonated N-coordination of the amide bond, was not observed in the complexes studied.

Since the discovery of metal ion induced amide (peptide) deprotonation reactions 31 several studies have led to the conclusion that only Pd(II), $Cu(II)$, $Ni(II)$, $Co(II)$ and $Zn(II)$ are usually capable of promoting these reactions. The promotion of amide hydrogen ionization increases in

⁶⁶ Monatshefte für Chemie, Vol. 117/8-9

Per metal ion.

b At room temperature.

° Not observed.

the series $Zn(II) \simeq Co(II) < Ni(II) < Cu(II) < Pd(II)^T$. Only the last three ions promote the deprotonation at $pH \le 7$. It is worth noting that throughout most of the pH range, in the absence of metal ions, the amide group is neutral¹. The ligand LH presents one of the most favorable cases for metal ion-promoted amide hydrogen deprotonation. The complex $ZnLC1 \cdot H_2O^{11}$ was reported to be the first case of amide deprotonation induced by $Zn(II)$ at pH ?. The presence of two strong anchoring groups (pyridine N-atom and aromatic $-MH₂$ group), capable of forming two stable 5-membered chelate rings per L^{-} with the amide nitrogen, reduces the importance of metal ion hydrolysis; the full binding capabilities of the metal ion favour deprotonation. In addition the planarity of the amide group is maintained in the deprotonated trigonal amide nitrogen.

ligand field spectral data of the prepared complexes

d The values in parentheses correspond to the pseudotetrahedral $[Co^{II}X_3(EtOH)]$ structural subunit.

No evidence of Co(II) ion promoted amide hydrogen ionization appears at $pH \le 7$ for both ligands studied. Using H_2O —*EtOH* solvent mixtures and in the presence of the atmospheric oxygen (but in the absence of molecular oxygen or activated charcoal), the reaction of LH with Co(II) salts leads to the formation of cationic Co(III) deprotonated complexes. The studied mechanism $\frac{1}{2}$, $\frac{32}{2}$ in the case of analogous solution reactions with bis-dipeptide complexes indicates that the reaction is preceded by formation of a brown binuclear intermediate. The brown color was observed in our reaction mixtures before the precipitation of the red Co(III) solids. The binuclear indermediate may be viewed as an oxygenated complex of Co(II), but is best described as a peroxo complex of two Co(III) that is in facile equilibrium with oxygen and the initial 966 T. Kabanos *et al. :*

mononuclear Co(II) species; the peroxo group occupies one coordination position on each Co(IlI) atom. In a second irreversible reaction peroxide is released, the coordination sphere is completed and the mononuclear

 E (X=Cl, Br, I, SCN, N03)

Co(III) complex forms. The well-known inertness of Co(III) complexes accounts for the relatively large time of the reactions studied. Using absolute ethanol as solvent the mixed-valence Co(II, III) complexes 6-9 were isolated. We cannot offer a reliable explanation for this complication.

References

- *i Sigel H., Martin R. B.,* Chem. Rev. 82, 385 (1982).
- *2 Collins T. J., Santarsiero B. D., Spies G. H.,* J. Chem. Soc. Chem. Commun. 1983, 681, and literature cited therein.
- ³ Ravindar V., Lingaiah P., Reddy K. V., Inorg. Chim. Acta 87, 35 (1984), and literature cited therein.
- *4 Tsangaris J. M., Perlepes S., Galinos A. G.,* Z. Naturforsch. 34b, 456 (1979).
- *5 Galinos A. G., Perlepes S. P., Zafiropoulos Th. F, Ioannou P. V., Kouinis J. K.,* Monatsh. Chem. 112, 1113 (1981).
- *6 Zafiropoulos Th. F., Perlepes S. P., Ioannou P. V., Tsangaris J. M., Galinos A. G.,* Z. Naturforsch. 36b, 87 (1981).
- *7 Kouinis J. K., Veltsistas P. Th., Tsangaris J. M.,* Monatsh. Chem. 113, 155 (1982).
- *8 Perlepes S. P., Tsangaris J. M.,* ibid. 116, 603 (1985).
- *9 Kabanos Th. A., Tsangaris* Y. M., J. Coord. Chem. 13, 89 (1984).
- *lo Perlepes S. P., Kabanos Th. A., Tsangaris J. M.,* Bull. Soc. Chim. Belg. 92, 859 (1983).
- *11 Kabanos Th. A., Perlepes S. P., Hondrellis B., Tsangaris J. M,,* Rev. Chim. Minerale 22, 344 (1985).
- 12 *Walker d. K., Nakon* R., L Amer. Chem. Soc. 99, 8359 (1977).
- 13 *Huchital D. H., Debesis E.,* Inorg. Chim. Acta 98, 79 (1985).

- *14 Katsaros N., Tsangaris J. M., Tsangaris G. M.,* Monatsh. Chem. 114, 27 (1983).
- *15 Geary W. J.,* Coord. Chem. Rev. 7, 81 (1971).
- 16 *Gelfand L. S., Iaconianni F J., Pytlewski L. L., Speca A. N., Mikulski C. M., Karayannis* N. M., J. Inorg. Nucl. Chem. 42, 377 (1980).
- *17 Mikulski C. M., Mattucci L., Smith Y., Tran T. B., Karayannis N. M.,* Inorg. Chim. Acta 80, 127 (1983).
- *18 Vezzosi L M., ZanoIi A. F., Peyronel G.,* Spectrochim. Acta 36A, 1065 (1980).
- 19 *Barnes D. J., Chapman R. L., Stephens F. S., Vagg R. S.,* Inorg. Chim. Acta 51, 155 (1981).
- *2o Clark R. J. H., Williams C. S.,* Inorg. Chem. 4, 350 (1965).
- *;1 Bailey R. A., Kozak S. L., Miehelsen T. W., Mills W. N.,* Coord. Chem. Rev. 6, 407 (1971).
- *22 Casellato U., Vigato P. A., Vidali M.,* Coord. Chem. Rev. 36, 183 (1981).
- *23 Ferraro J. R.,* Low-Frequency Vibrations of Inorganic and Coordination Compounds, pp. 76-80. New York: Plenum Press. 1971.
- *24 Perlepes S. P., Zafiropoulos Th. F., Raptis D., Galinos A. G.,* Monatsh. Chem. 114, 1355 (1983), and literature cited therein.
- 25 *Zafiropoulos Th. F., Galinos A. G., Perlepes S. P.,* J. Coord. Chem. 13, 197 (1984).
- 26 *Brown D. B., Burbank R. D., Robin M. B.,* J. Amer. Chem. Soc. 91, 2895 (1969).
- 27 *Nonoyama M.,* Trans. Met. Chem. 7, 281 (1982).
- *28 Cotton F. A., Wilkinson G.,* Advanced Inorganic Chemistry, 4th ed., pp. 766- 775. New York: Wiley-Interscience. 1980.
- *29 Lever A. B. P.,* Inorganic Electronic Spectroscopy, pp. 306-333. Amsterdam: Elsevier. 1968.
- 3o *Barnet M. T., Freeman H. C., Buckingham D. A., Hsu I-Nan, Van der Helm D., J.* Chem. Soc. Chem. Commun. 1970, 367.
- *31 Datta S. P., Rabin B. R.,* Trans. Faraday Soc. 52, 1123 (1956).
- *32 Michailidis M. S., Martin R. B.,* J. Amer. Chem. Soc. 91, 4683 (1969),
- 33 *McKenzie E. D.,* J. Chem. Soc. A1969, 1655.